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ABSTRACT
Diets which have a low glycaemic index (GI) and high levels of dietary
fibre are generally considered to be beneficial for promoting weight
loss and improving insulin sensitivity, and are therefore recom-
mended for the management of diabesity (the coexistence of obesity
and type 2 diabetes mellitus). In addition, high dietary fibre intake is
also positively associated with gut health. High-amylose wheat (HAW)
is a type of wheat which has a lower GI value and contains higher
amounts of dietary fibre, including resistant starch, compared with
standard wheat, and therefore has potential applications as
a functional food for improving metabolic and gut health. The aim
of this review is to describe the characteristics of HAW and the
current evidence in support of its potential effects on metabolic
and gut health, as well as identifying important areas for future
research.
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The issue of diabesity

Obesity is a major public health challenge worldwide, with over one-third of the world’s
adult population being classified as overweight or obese in 2013.[1] Australia is one of the
nations with the highest prevalence of overweight and obesity and according to the latest
Australian Health Survey, 63.4% of Australian adults were overweight or obese when the
survey was conducted (2014–2015).[2] Obesity arises from the complex interaction
between environmental, socioeconomic and genetic factors. Ultimately, however, weight
gain is the result of a chronic imbalance between energy intake and energy expenditure.
The consumption of calorie-dense but nutrient-poor foods in conjunction with low levels
of physical activity has been widely recognised as a major factor contributing to the
dramatic rise in obesity rates worldwide.[3]

Overweight and obese individuals are at an elevated risk of developing a range of debilitat-
ing complications that can impact negatively on quality of life and result in premature
mortality. Health consequences of obesity include dyslipidaemia, insulin resistance, osteoar-
thritis, sleep apnoea, asthma, impaired fertility, cardiovascular disease (CVD), hypertension,
some cancers and psychological problems.[3] Type 2 diabetesmellitus (T2DM) is a particularly
serious comorbidity associated with overweight and obesity[4] and the prevalence of T2DM
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has increased at an alarming rate, paralleling global overweight and obesity trends. In the latest
Australian Health Survey, over 1.2 million Australian individuals were reported to have
T2DM.[2] The coexistence of obesity and T2DM in the same individuals is more detrimental
to health than either condition alone, since T2DM also confers an elevated risk of developing
life-threatening macrovascular (e.g., CVD and stroke) and microvascular (e.g., retinopathy,
neuropathy and nephropathy) complications.[5]

The strong and interdependent relationship between obesity and T2DM has led to the
coining of the term ‘diabesity’ (also known as obesity-associated diabetes) to describe diabetes
in the context of obesity.[4] It has been estimated that between 80% and 90% of all diagnoses of
T2DM are secondary to overweight or obesity.[4] Both obesity and T2DM make a significant
contribution to healthcare expenditure of both industrialised and semi-industrialised nations.
In the US, the annual health-care cost attributable to obesity was US$190.2 billion in 2005,
representing ~21% of total US healthcare expenditure.[6] Global health expenditure on
diabetes was US$376 billion in 2010 and is expected to reach US$490 billion by 2030.[7]

According to the Australian Diabetes, Obesity and Lifestyle study, the total annual direct cost
attributable to overweight and obesity for Australian adults aged ≥30 years was AUS$21.7 bil-
lion in 2005[8], while the amount attributed to diabetes in the same year was AUS$10.6 -
billion.[9] The significant financial burden of obesity and T2DM has led to an increasing
emphasis on identifying effective strategies for preventing and treating these diseases.

Treatment options for diabesity

While a wide range of strategies are used for the treatment and management of obesity
and T2DM, the long-term efficacy of most of these approaches remains questionable.
Pharmacological approaches for treating obesity and T2DM are available, but most of
these have significant side effects, including headache, gastrointestinal discomfort, and
nausea[10,11], and are thus not suitable for long-term use. Surgical approaches, such as
gastric banding, are an effective treatment option, but are costly and carry the risk of
complications from the surgery, and so are typically reserved for individuals with severe
obesity who have not responded to other forms of treatment.[12]

Diet and lifestyle interventions, particularly low-energy diets and increased physical
activity, remain the first-line therapeutic strategies for tackling both obesity and T2DM,
and have been shown to be effective in preventing the progression to T2DM in overweight
and obese subjects.[13] However, a major challenge with most dietary interventions is the
difficulty individuals experience in maintaining weight loss in the long term. In fact, one
review paper noted that only about 20% of overweight individuals were able to success-
fully maintain a weight loss of ≥10% of their initial body weight for at least 1 year.[14]

Thus, while low-energy diets are often effective in achieving short-term weight loss, most
individuals end up regaining any lost weight within a relatively short time-frame after the
diet ends and often end up heavier than they were before dieting. In this context, it
remains important to identify diets that are sustainable and can therefore assist individuals
in maintaining long-term weight loss or avoiding further weight gain.

Low glycaemic index (GI) or glycaemic load (GL) diets are one dietary approach that
has been widely applied to the management of obesity and T2DM, and have been shown
to have beneficial effects on weight loss and insulin sensitivity. The GI of a food is
determined by comparing its glycaemic response to that of the same amount of
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carbohydrate (CHO) from a standard food (i.e., glucose or white bread) consumed by the
same subject. Low GI foods (GI values <55) are digested and absorbed more slowly than
high GI foods (GI values >70), and therefore result in longer feelings of fullness after
a meal, slowed gastric emptying and improved insulin sensitivity and pancreatic β-cell
function.[15] A low GI diet has been shown to be beneficial for weight loss and insulin
sensitivity, whereas chronic consumption of a high GI diet has been linked to weight gain,
elevated triglyceride and reduced HDL cholesterol concentrations and insulin
resistance.[16] As a result, replacing high GI CHO with low GI CHO in the diet has
been suggested as a strategy to achieve metabolic benefits, including weight loss and
improved insulin sensitivity. Consequently, promoting the consumption of (lower GI)
whole-grains and whole-grains based foods in the place of (higher GI) refined grains
represents a potential sustainable approach for the management of diabesity.

Whole-grains

Whole-grains consist of the entire grain, including the bran and germ in their natural ratio,
while refined-grains only contain endosperm. The germ contains a mixture of lipids, proteins,
and some soluble CHOs while the bran is composed of mainly fermentable CHOs (cellulose,
hemicellulose and arabinoxylan) and polyphenolic lignins.[17] Due to their higher nutrients
content in comparison to refined grains, whole-grains are generally considered to have
a greater nutritional value. A meta-analysis reported that consumption of 40 g (and ideally
50 g) of whole-grains daily is associated with beneficial health effects in human subjects,
including protection against obesity and T2DM.[18] Recommendations to consume whole-
grains also feature in many national dietary guidelines, including the Australian Dietary
Guidelines 2013[19] and Dietary Guidelines for Americans 8th ed. 2015–2020.[20]

Anti-diabesity effects

There are several features of whole-grains that contribute to their greater health benefits in
comparison to refined-grains. First, the GI of whole-grains is typically lower than refined-
grains; therefore, as indicated above, replacing refined-grains with whole-grains effectively
reduces the GI value of food. For instance, the average GI value of 100% Whole Grain®
bread (51) and whole-wheat bread (~69) are lower than that of refined wheat bread
(~75).[21] Whole-grains also have a higher dietary fibre content compared to refined
grains. Whole-wheat flour, for example, contains ~380% more dietary fibre than refined
wheat flour (13.39 g vs. 3.52 g/100 g).[22] Dietary fibre is known to have laxative effects and
blood lipid and blood glucose-lowering properties.[18] In a prospective cohort study
involving 176,117 adults, higher self-reported cereal fibre intake was shown to be inversely
associated with T2DM risk (relative risk 0.72 [95% CI, 0.56–0.93])[23], while in another
study intake of fibre derived from whole-grains, but not fibre from other foods, was
associated with 17% reduction in the risk of all-cause mortality.[24]

The bioactive nutrients present in whole-grains, including inorganic nutrients, vitamins,
minerals and antioxidant compounds, also contribute to their added health benefits compared
to refined grains. Whole wheat, for example, contains essential amino acids (lysine and
tryptophan), vitamins (thiamine and niacin), minerals (phosphorus and iron), and abundant
bioactive compounds (alkylresorcinols, benzoxazinoids, phytosterols, tocols, lignans and
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phenolic acid). The levels of alkylresorcinols (1,3-dihydroxy-5-alkylbenzene derivatives) are
particularly high in whole-grains; whole wheat contains 489–660 µg of these compounds per
gram, compared to only 13–47 µg/g in refined wheat.[25] Wheat alkylresorcinols have been
shown to promote glucose tolerance and insulin sensitivity in a mouse model of diet-induced
obesity by suppressing hepatic lipid accumulation and intestinal cholesterol absorption.[26]

Other individual nutrients have also been shown to have favourable metabolic effects;
benzoxazinoids and their derivatives have appetite- and weight-reducing effects[27], lignans
exhibit antioxidant effects[28], and the phenolic acids (e.g., ferulic acid and vanillic acid)
exhibit antidiabetic properties.[11] The different types of bioactive compounds present in
whole-wheat including their functional properties have been well described in previous
reviews[29,30] and, therefore, will not be discussed in detail here.

Gut health

Whole-grains have a number of beneficial effects on gut function in comparison to refined-
grains, including prolonging gastric emptying and increasing stomach distention and small
intestinal transit time.[31] These effects are largely due to the higher dietary fibre content of
whole-grains compared to refined grains, since fibre is one of the most important dietary
constituents involved in the regulation of these processes.[32] Dietary fibre also promotes large
bowel function and increases colonic transit time, by promoting fermentation by the gut
microbiota and through its bulking action.[32] As a result, increased consumption of dietary
fibre has been shown to assist in weight loss and prevention of weight gain, improve glucose
tolerance and lower total plasma cholesterol levels.[33] The major forms of fibre in wheat are the
insoluble fibre arabinoxylan and soluble fibre β-glucan.[34] Both of these forms of fibre increase
faecal bulk regulate intestinal movement and decrease the amount of glucose absorbed in the
small intestine, and consequently reduce circulating cholesterol concentrations.[35]

The gut is the largest endocrine organ in the body, secreting more than 30 different peptide
hormones. These hormones act either on vagal afferent endings to signal satiety or enter the
circulation to target distant organs.[36] The gut hormones have a diverse range of physiological
effects. Glucagon-like peptide (GLP)-1, for example, enhances postprandial glucose-
dependent insulin release, inhibits glucagon secretion and delays gastric emptying via the
vagal pathway and endocrine actions at central sites.[36] Peptide tyrosine tyrosine (PYY) also
promotes satiety both via direct actions on the hypothalamus and by reducing gut motility[37],
while ghrelin is orexigenic and promotes appetite via local and systemic actions.[38]

The hormones released by the gut depend on the types and amounts of specific
nutrients, including CHO, in the diet, which interact with specialised nutrient receptors
on cells within the gastrointestinal tract to facilitate hormone release.[39] For example,
glucose released from the digestion of starches, including wheat, binds to the sweet taste
receptor heterodimer, Taste 1 Receptor Member 2 (TAS1R2)-Taste 1 Receptor Member 3
(TAS1R3). This results in increased release of GLP-1, which in turn acts to suppress gut
motility and induce satiety.[39] In addition to the amount and type of wheat consumed,
there is evidence that the different physical size of the wheat particles consumed can also
impact on gastrointestinal responses.[40] By way of example, one small human trial (n = 9)
demonstrated that consumption of 55 g of porridge made using coarse (2 mm) wheat
particles resulted in significantly lower blood glucose, insulin and glucose-dependent
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insulinotropic polypeptide (GIP) concentrations in comparison to consuming the same
amount of porridge made with smooth (<0.2 mm) wheat particles.[40]

The human gut microbiota contains tens of trillions of microorganisms, in which at
least 1000 distinct species have been identified.[41] These microbes mainly comprise of
bacteria, of which more than 90% belong to either the Firmicutes (60–80%) or
Bacteroidetes (20–40%) species, although archaea, viruses, fungi and protozoa are also
present.[42] There is increasing recognition that shifts in the composition of the gut
microbiota have significant effects on human health, including metabolic health, and
may contribute to the risk of obesity, insulin resistance and T2DM.[43] Increased abun-
dance of Firmicutes in the gut is generally associated with obesity while the Bacteroidetes
are associated with weight loss in most[44,45], though not all[46], human studies. In
addition, increasing gut bifidobacteria content by supplementing the diet with
a prebiotic (oligofructose) has been associated with improved glucose tolerance and
glucose-induced insulin secretion and anti-inflammatory effects.[47]

The composition of the gut microbiota is highly influenced by dietary intake, with dietary
factors estimated to account for ~57%of the variation in gutmicrobiota, in comparisonwith only
~12%due to genetic variation.[48] The fermentableCHOs, including dietaryfibre, resistant starch
and oligosaccharides (stachyose, raffinose, and fructooligosaccharides), mainly present in the
bran and germ parts of the whole grain, play a particularly significant role in regulating gut
microbiota composition, and this may largely explain the positive influence of whole-grains on
the gutmicrobiota. These components all appear to have prebiotic effects, which help to increase
bifidobacteria and lactobacilli in the gut, and this has been demonstrated in human clinical trials
as well as animal studies.[49]

The fermentation of undigested CHOs such as dietary fibres by gut microbiota results
in the generation of a number of end-products, of which short-chain fatty acids (SCFAs)
are one of the most well studied. SCFAs are a subset of saturated fatty acids containing
six or less carbons (C). The most abundant SCFAs are acetate (C2), propionate (C3), and
butyrate (C4).[50] The majority (~95%) of these SCFAs are rapidly absorbed by the
colonocytes or are released into the circulation. The SCFAs are largely utilised as an
energy source to fuel the intestinal epithelial cells.[51] However, some SCFAs also act as
signalling molecules for intestinal orphan G protein-coupled receptors, which are
involved in regulation of glucose homeostasis and lipid metabolism, with different
SCFAs having different effects.[52] Thus, propionate is mainly involved in promoting
hepatic gluconeogenesis, while acetate and butyrate contribute to hepatic lipogenesis
and cholesterogenesis.[53] Different bacterial species give rise to different SCFAs;
Bacteroidetes mainly produce acetate and propionate and Firmicutes produce predomi-
nately butyrate.[51] The polysaccharides from the wheat bran (e.g., cellulose, arabinox-
ylans, and β-glucan), which escape digestion in the small intestine, may end up being
fermented by the microbiota in the large intestine, resulting in the production of
individual monosaccharides and additional SCFAs.[51] Animal studies have shown that
wheat bran fibre alters intestinal microbiota composition, resulting in increased
Lactobacillus counts in the ileum and Bifidobacterium counts in the colon, increased
caecal SCFA concentrations and reduced pH in the colon compared to a control diet
without wheat bran.[54,55]
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High-amylose wheat (HAW)

High-amylose wheat (HAW) is distinguished from other types of wheat by its higher
amylose content. This difference has, in turn, led to suggestions that HAW may afford
additional health benefits over and above those provided by other types of whole-wheat.

Starch is comprised of the glucose polymers amylose and amylopectin, which mainly
differ in their branching and molecular size. The key differences between amylose and
amylopectin are shown in Table 1. The total starch content in most grains, including
wheat, typically comprises 72–75% amylopectin and 25–28% amylose. However, the
relative proportions of these polymers can be altered either through normal selective
breeding or genetic manipulation. In HAW, the amylose content of wheat can increase
to up to ~50% of total starch content through normal selective breeding[56], whereas in
some mutant genotypes of wheat, the amylose content can be increased to up to 70% of
total starch content.[57] Bird and Regina[58] neatly summarise how the elevation of amylose
content in wheat can be attained mainly by manipulating two different mechanisms that
control starch biosynthesis: (i) suppression of starch synthase IIa that reduces both glucan
elongation and amylopectin synthesis and (ii) suppression of starch branching enzyme
(SBE) IIa and/or SEBIIb. Similarly, the amylose content can decrease to as low as 1% (e.g.,
waxy wheat) through mutations in the starch synthase.

Potential anti-diabesity effects

To date, no published study has specifically evaluated the GI value of HAW as this type of
wheat is still novel and has not yet been marketed or grown commercially. Previous
studies have, however, demonstrated that the ratio of amylose to amylopectin is a major
factor influencing the GI value of CHO. Consequently, the higher amylose content and
amylose:amylopectin ratio of HAW in comparison to standard wheat would be expected
to be associated with a lower GI value. The inverse relationship between the amylose:
amylopectin ratio and GI is due to the fact that the chemically linear amylose chain forms
a compact structure that limits enzyme accessibility and amylolysis, thus slowing digestion
and reducing postprandial glycaemic and insulinemic response.[59] In contrast, amylopec-
tin is highly branched and less ordered than amylose, and is thus more easily digested and

Table 1. The key differences between amylose and amylopectin in starch.
Amylose Amylopectin

Mainly α-1,4 linkages Consist α-1,6 and α-1,4 linkages
Linear chain; helix Highly branched molecule; cluster
Long but smaller size than amylopectin Shorter but much larger size than amylose
500–3000 degree of polymerization 5000–50000 degree of polymerization
Less soluble in water More soluble in water
Constitutes ~20% of the starch Constitutes ~80% of the starch
Slowly hydrolysed Rapidly hydrolysed
Aggregate more rapidly during retrogradation Aggregate more slowly during retrogradation
Rigid Soft
Energy storage for long term Energy storage for short term
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produces a higher glycaemic response. Amylose molecules also aggregate and crystallise
more rapidly during retrogradation in cooked starch compared to amylopectin, and are
thus resistant to enzyme hydrolysis and are more slowly digested.[60] Therefore, replacing
refined-grains with HAW may be even more effective than replacement with standard
whole-grains wheat in reducing the GI value of the food. Directly testing this hypothesis
remains an important question to address in future studies.

In addition to the higher amylose content, HAW also has a higher dietary fibre content
which contributes by the increased amount of resistant starch compared to standard
wheat. Resistant starch is a form of dietary fibre and is defined as any starch that is not
digested by α-amylase in the small intestine and therefore passes to the large bowel to be
fermented by microbiota.[61] A recent review published by Bird and Regina[58] describes
the health benefits of HAW with particular emphasis on this type of wheat being
a superior source of dietary fibre, in particular resistant starch, compared to standard
wheat. This is supported by studies that have assessed dietary fibre content of different
types of wheat, including a study that reported one specific type of HAW (of unknown
amylose content) contained 2.8–3.6% of resistant starch in dry matter, compared to almost
none in standard wheat.[62] Similarly, another study reported that HAW flour (~50%
starch as amylose) contained 16.9% of resistant starch in dry matter compared to 1.8–7.3%
in flour obtained from other wheat types.[56] The higher amount of resistant starch in
HAW flour can be attributed to its higher amylose content, since a previous study
identified a positive relationship between resistant starch and amylose content in
rice.[63] Since resistant starch is not digested or absorbed in the small intestine, consump-
tion of HAW would also be expected to reduce postprandial glycaemic and insulinemic
response in comparison to consumption of an equivalent amount of standard wheat. In
addition, HAW also contains bioactive compounds, vitamins and minerals which have
beneficial effects on body weight, insulin sensitivity and/or gut health as similar to other
whole-grains.[29,30,64] However, further studies are needed to determine how the levels
compare to those in other commercial wheat types and whether this has the potential to
confer additional health benefits.

Gut health

Given the significant roles of whole-grains in promoting gut function, gut hormone
production and microbiota composition, it is expected that the higher levels of amylose
and dietary fibres (including resistant starch) in HAW compared to standard whole-wheat
will contribute to additional effects on gut. To date, however, few studies have directly
tested this. In rodents, diets containing high-amylose-resistant starch have been demon-
strated to reduce body fat mass via effects on gut hormone concentrations[65,66], including
increased production (in both the cecum and large intestine) and plasma concentrations
of the anorexigenic gut hormones PYY and GLP-1.[65] There are also indications, however,
that the effects of increased dietary intake of resistant starch may differ between lean and
obese individuals. In a rodent study, consuming dietary resistant starch from high-
amylose-resistant corn starch (Hi-Maize 260) resulted in decreased fat mass and improved
glucose tolerance in lean, but not obese, C57BL/6J mice.[67] Thus, it will be important to
evaluate the effects of HAW in both lean and obese humans and animals.
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The consumption of HAW also has the potential to favourably alter the composition of
the gut microbiota and increase the production of SCFAs by providing more fuel for gut
microbiota. Previous studies have demonstrated reduced Firmicutes and increased
Bacteroidetes levels in rodents fed a diet containing high-amylose corn starch.[68,69] In
addition, supplementing the diet of high-fat diet-fed mice with high-amylose corn starch
was shown to result in an increased Bacteroidetes/Firmicutes ratio in the gut in compar-
ison with mice fed the high-fat diet alone.[70,71] Consuming HAW (>70% amylose con-
tent) has been reported to lower the pH value (pH 5.90) of the caecal content compared
with standard amylose wheat (pH 6.23).[60] This study showed that both total SCFAs and
all individual SCFAs (acetate, propionate, and butyrate) in the faeces were significantly
higher in rats fed with HAW than those fed with standard wheat. HAW has also been
shown to preserve colonic function in rats fed Western-style moderate-fat (19%) and
protein (20%) diets by reducing colonic DNA damage and increasing SCFA levels in the
digesta.[72] In another study, however, HAW consumption was not associated with
alterations to colon contractility, which suggests HAW does not affect gut motility and
transit time.[73] The impact of HAW on the composition of gut microbiota and SCFA
production especially in humans has yet to be determined and represents a critical area for
future research.

Even though dietary nutrients, including dietary fibre, present in HAW may impart
beneficial effects to health as discussed above there is also the possibility of adverse effects
of HAW, particularly at a high level of intake. For instance, metabolic reactions occurring
in the colon or distal small intestine, due to unabsorbed polysaccharides such as fructose
and fructans that are also present in HAW, could potentially result in increased flatulence,
abdominal discomfort/bloating and diarrhoea.[74] It is also likely, however, that these
symptoms will vary between individuals. For example, a large proportion of individuals
with irritable bowel syndrome have impaired gut transit time and tolerance of intestinal
gas load compared with healthy subjects[75], and therefore a HAW diet may not be
advisable for this population. However, the impact of different levels of a HAW diet on
gut health and whether there may be undesirable side effects associated with higher levels
of consumption has yet to be directly tested either in animal models or human subjects.

Public health perspective and potential applications

Wheat is a versatile ingredient for many cereal-based processed products and about 20%
of food calories for the world population are supplied from this grain.[60] In Australia,
wheat is the largest crop produced yearly; ~21.9 million tonnes of wheat was produced in
2015–2016, which was grown over 11.1 million hectares.[76] In recent years, however, an
increasing number of Australian adults are consciously avoiding the consumption of foods
containing wheat due to concern about the potential negative health effects of the gluten
components.[77] Since celiac disease (i.e. a medically diagnosed intolerance of gluten),
affects less than 1% of the Australian population[78], it is clear that a substantial number of
adults are avoiding consumption of wheat-based products predominantly based on per-
ceived negative health effects.[77] In this context, there is a pressing need to re-establish the
confidence of Australian consumers in the health benefits that can be obtained from
wheat-based products. Consequently, a systematic assessment of the effects of HAW on
metabolic- and gastrointestinal health is warranted. If the superior benefits of HAW in
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aiding weight loss and improving metabolic/gut health are proven, then replacement of
standard wheat with HAW in staple foods, such as bread, breakfast cereals and pasta, may
potentially offer an alternative approach to treat and/or prevent diabesity without chan-
ging existing dietary habits.
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